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Motivation and overview

I Score-based generative models (SGMs) [5, 6, 4] have proven highly
effective for modelling densities on finite dimensional space.

I We often wish to model distributions over functional spaces.
I We represent functional data in spectral space to dissociate the

stochastic and space-time components. Using dimensionality reduction
techniques we then sample from their stochastic component using finite
dimensional SGMs.

Figure 1: Illustration of our methodology. SGM is performed in a spectral space.

Stochastic processes

A stochastic process in Rd is a collection of Rd-valued random variables (Y x)x∈X ,
with X a compact input space.
I Existing generative modelling approaches parametrise the finite dimensional

marginals {Y xi : i ∈ {1, . . . , n}, xi ∈ X} for every n ∈ N.
I The Kolmogorov extension theorem [2, Thm15.26] requires

exchangeability and consistency of the marginals to define a valid
probability distribution on the function space.

In order to derive a consistent method, we dissociate the stochastic part of the
process from its space-time part using the Karhunen-Loéve theorem.

Theorem 1: Karhunen-Loéve Theorem

Let (Y x)x∈X be a continuous stochastic process with continuous covariance
function KY (x1, x2) = E[〈Y x1,Y x2〉]. Let (em)m∈N be the orthonormal basis of
L2(X ) formed by the eigenfunctions of the linear operator
TKY : f 7→

∫
X KY (x , ·)f (x)dx with eigenvalues (λm)m∈N. Then we have:
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∫
X 〈Y x ,em(x)〉dx .

I A natural and principled approximation of the process (Y x)x∈X is given by
FM ,

∑M
m=0 λm

1/2Zmem,
I Finite marginals induced by (FM(x))x∈X are exchangeable and consistent.
I In order to sample from (FM(x))x∈X one only needs to sample {Zm}M

m=0, which
is a finite dimensional problem well suited to SGMs.

I If {Zm}M
m=1 ∼ N(0, Id) then FM is a Gaussian process.

I By taking a Gaussian reference measure in the SGM, we induce a Gaussian
process reference measure in the original space. This induced Gaussian
process is closest to the target distribution in the following sense:

Proposition 1

Let {Z̄m,0}M
m=0 ∼ N(0, Id) and let π0 be the distribution of

∑+∞
m=0 λ

1/2
m Z̄m,0em and

π the target distribution. Let GP(X ) be the space of Gaussian processes on X
and assume K is the covariance kernel. Then, π0 ∈ arg minπGP∈GP(X )KL (π|πGP).

I We can consider arbitrary kernels due to Mercer’s theorem [3, Thm 1.1].

References
[1] C. T. H. Baker. Numerical Integration in the Treatment of Integral Equations. In G. Hämmerlin, editor, Numerische Integra-

tion: Tagung Im Mathematischen Forschungsinstitut Oberwolfach Vom 1. Bis 7. Oktober 1978, pages 44–53. Birkhäuser Basel,
Basel, 1979.

[2] D. Charalambos and B. Aliprantis. Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer-Verlag Berlin and Heidelberg
GmbH & Company KG, 2013.

[3] J. Ferreira and V. Menegatto. Eigenvalues of integral operators defined by smooth positive definite kernels. Integral Equations
and Operator Theory, 64(1):61–81, 2009.

[4] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems,
2020.

[5] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In Advances in Neural Information
Processing Systems, 2019.

[6] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative modeling through
stochastic differential equations. In International Conference on Learning Representations, 2021.

[7] G. Wynne and A. B. Duncan. A kernel two-sample test for functional data. Journal of Machine Learning Research, 23(73):1–51,
2022.

SP-SGM Algorithm

Algorithm 1 Spectral Process Score-Based Generative Model (SP-SGM)

Require: T ,D, θ0,Niter, ε,K
1: /// TRAINING ///
2: Get DM, {(λm,em)}M

m=0 from D using Algorithm 2 . Dataset projection
3: for n ∈ {0, . . . ,Niter − 1} do
4: Get {Ym,0}M

m=0 mini-batch from DM

5: t ∼ U([ε,T ]) . Uniform sampling between ε and T
6: Ym,t = e−tYm,0 + (1 − e−2t)1/2G, G ∼ N(0, Id) . Diffuse
7: Get DSM loss `(θn) . Compute score matching loss
8: θn+1 = optimiser_update(θn, `(θn)) . ADAM optimiser step
9: θ? = θNiter

10: /// SAMPLING ///
11: {Ȳm,0}M

m=0 ∼ N(0, Id) . Sample from Gaussian distribution
12: b?

θ(t , y) = sθ?(T − t , ȳ) for any t ∈ [0,T ], ȳ ∈ RM+1 . Reverse process drift
13: {Ȳm,n}M,N

m=0,n=0 Euler-Maruyama with drift b?
θ . Approximate reverse diffusion

14: return θ?, x 7→
∑M

m=0 λ
1/2
m Ȳm,Nem(x)

Algorithm 2 Spectral dataset projection

Require: D = {{Yi
xi ,n
}Ni

n=1}L
i=1,K ,M

1: Gram matrix Ki ,j = K (xi, xj) for xi, xj ∈ {xs}S
s=1 = {xi ,n : i ∈ {1, ..., L},n ∈ {1, ...,Ni}} and

S =
∑L

i=1 Ni
2: Solve eigensystem 1

SKum = λmat
m um

3: êm(x) ≈ (
√

Sλmat
m )−1 ∑S

s=1 K (x , xs)um(xs) . [1, Theorem 3.4]
4: Z i

m ≈ 1
Ni

∑Ni
n=1(Yxn − µ(xn))(λ

mat
m )−1/2êm(xn) where µ(x) = E[Yx ]

5: return {Z i
m}i=1,...,L, m=0,...,M, {(λm,em)}M

m=0

1D datasets

Figure 2: Samples from the Quadratic dataset
(orange), and from a trained NP [Left, blue]
and a trained SP-SGM [Right, blue].

SP-SGM NP GP
Quadratic 5.4±0.7 8.6±1.5 100.0±0.0
Melbourne 5.3±0.7 10.1±1.9 20.1±4.0
Gridwatch 4.7±0.5 51.8±15.1 29.2±5.5

Table 1: Power (percent) of a kernel
two-sample hypothesis test on 1D datasets.
Lower is better. Statistically significant best
result is in bold.

I We are able to capture bi-modality while Neural processes (NPs) are not.
I Quantitatively we outperform Gaussian processes (GPs) and NPs based on

the power of a two-sample hypothesis test [7].

MNIST dataset

I By performing the diffusion in the spectral space, we capture and incorporate
spatial correlations while an ordinary diffusion process does not.

Figure 3: Forward process in SP-SGM [Top] vs standard SGM [Bottom] on MNIST digits.
Pixel-wise mean and standard deviation of reference measure in rightmost columns respectively.

We also performed ablation studies on truncation order and kernel choice:
I Best performance (in terms of functional MMD) was obtained for intermediate

numbers of spectral components M.
I Best performance was obtained with the covariance kernel. Smoothness

imposed by the RBF kernel tends to produce blurry samples.

Figure 4: Eigenfunctions
[row 1, 3] and samples
from SP-SGM [row 2, 4]
for covariance and RBF
kernels.

M = 20M = 100M = 200

Figure 5: On the left, functional MMD vs M. Lower is better.
On the right, Karhunen-Loève recompositions of MNIST
samples [top row] and distribution of first spectral component
from the dataset [orange] and from the SGM in spectral
space [blue].
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