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 University of Oxford visual identity guidelines

At the heart of our visual identity is the Oxford logo.
It should appear on everything we produce, from 
letterheads to leaflets and from online banners to 
bookmarks.

The primary quadrangle logo consists of an Oxford blue 
(Pantone 282) square with the words UNIVERSITY OF 
OXFORD at the foot and the belted crest in the top 
right-hand corner reversed out in white.

The word OXFORD is a specially drawn typeface while all 
other text elements use the typeface Foundry Sterling.

The secondary version of the Oxford logo, the horizontal 
rectangle logo, is only to be used where height (vertical 
space) is restricted.

These standard versions of the Oxford logo are intended 
for use on white or light-coloured backgrounds, including 
light uncomplicated photographic backgrounds.

Examples of how these logos should be used for various 
applications appear in the following pages.

NOTE
The minimum size for the quadrangle logo and the 
rectangle logo is 24mm wide. Smaller versions with 
bolder elements are available for use down to 15mm 
wide. See page 7.
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Motivation and overview
▶ Score-based generative models (SGMs) [6, 2] have shown great

success for modelling flexible distributions.
▶ Data is often naturally described on Riemannian manifolds such as

spheres, torii, and Lie groups, whereas standard SGMs assume a flat
geometry, making them ill-suited.

▶ We introduce Riemannian SGMs, a model which admits the
parametrization of flexible distributions on manifolds by simulating
the time reversal of continuous diffusion process.

Contributions
▶ We establish that the corresponding time-reversal process is also a

diffusion whose drift includes the Stein score.
▶ Rely on Geodesic Random Walk for sampling processes [3].
▶ We provide theoretical convergence bounds for RSGMs.
▶ We empirically demonstrate that RGSMs perform and scale better

than recent baselines [4, 5].

Ingredient \ Space Euclidean Manifolds / Compact manifolds

Forward process Ornstein–Uhlenbeck Langevin Dynamics / Brownian

Base distribution pref Gaussian Wrapped Normal / Uniform

Time reversal [1, Theorem 4.9] Theorem 1

Sampling of the forward Direct Geodesic Random Walk

Sampling of the backward Euler–Maruyama Geodesic Random Walk

Table 1: SGM on Euclidean spaces vs RSGM on Riemannian manifolds.

Noising and denoising processes
We rely on Langevin dynamics for the forward noising process

dXt = −1
2 ∇XtU(Xt)dt + dBM

t , (1)

which admits the invariant density dpref/dVolM(x) ∝ e−U(x). A convenient
choice for pref is the Wrapped normal distribution, and on compact mani-
folds we choose the uniform pref = 1/VolM.

Theorem 1: Time-reversed diffusion

Let (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] the time-reversal. Under mild assump-
tions on p0 and on pt the density of Pt = L(Xt), then

dYt = {1
2∇YtU(Yt) +∇ log pT−t(Yt)}dt + dBM

t . (2)

(a) GRW vs Brownian motion density (b) GRW step (c) Trajectory

Algorithm 1 GRW (Geodesic Random Walk)

Require: T ,N,X γ
0 ,b, σ, P, γ = T/N

1: for k ∈ {0, . . . ,N − 1} do
2: Zk+1 ∼ N(0, Id) ▷ Gaussian on tangent space TxM
3: Wk+1 = γb(kγ,X γ

k ) +
√
γσ(kγ,X γ

k )Zk+1 ▷ Euler–Maruyama step
4: X γ

k+1 = expX γ
k
[Wk+1] ▷ Geodesic projection onto M

Score-based generative modelling

Algorithm 2 RSGM (Riemannian Score-Based Generative Model)

Require: ε,T ,N, {X m
0 }M

m=1, loss,s, θ0,Niter,pref,P
1: for n ∈ {0, . . . ,Niter − 1} do /// TRAINING ///
2: X0 ∼ (1/M)

∑M
m=1 δX m

0
▷ Random mini-batch from dataset

3: t ∼ U([ε,T ]) ▷ Uniform sampling between ε and T
4: Xt = GRW(t ,N,X0,0, Id,P) ▷ Approximate forward diffusion with Algorithm 1
5: ℓ(θn) = ℓt(T ,N,X0,Xt , loss,sθn) ▷ Compute score matching loss from Table 2
6: θn+1 = optimizer_update(θn, ℓ(θn)) ▷ ADAM optimizer step
7: θ⋆ = θNepoch

8: Y0 ∼ pref /// SAMPLING /// ▷ Sample from uniform distribution
9: b⋆

θ(t , x) =
1
2 ∇xU(x) + sθ⋆(T − t , x) for any t ∈ [0,T ], x ∈ M ▷ Reverse process drift

10: {Yk}N
k=0 = GRW(T ,N,Y0,bθ⋆, Id,P) ▷ Approximate reverse diffusion with Algorithm 1

▶ The following result ensures that RSGM generates samples which are close to p0.

Theorem 2: Quantitative bounds for RSGM

Under mild assumption over p0, assuming that M is compact and that there exists M ≥ 0
such that for any t ∈ [0,T ] and x ∈ M, ∥sθ⋆(t , x)−∇ log pt(x)∥ ≤ M, with sθ⋆ ∈
C([0,T ] ,X (M)). Then if T > 1/2, there exists C ≥ 0 independent on T s.t.

W1(L(YN),p0) = C(e−λ1T +
√

T/2M + eTγ1/2), (3)

where W1 is the Wasserstein distance of order one on the probability measures on M.

Score matching on compact manifolds
▶ The heat kernel is given by pt |0(xt |x0) =

∑
j∈N e−λj tϕj(x0)ϕj(xt) (Sturm–Liouville).

▶ Truncation: SJ,t(x0, xt) ≜ ∇xt log
∑J

j=0 e−λj tϕj(x0)ϕj(xt) ≈ ∇xt log pt(xt |x0).

Loss Approximation Loss function
Requirements

Complexity
pt |0 exp−1

Xt

ℓt |0 (DSM)

None 1
2E

[
∥s(Xt)−∇Xt log pt(Xt |X0)∥2

]
– – –

Truncation 1
2E

[
∥s(Xt)− SJ,t(X0,Xt)∥2

]
✓ ✗ O(1)

Varhadan 1
2E

[
∥s(Xt)− exp−1

Xt
(X0)/t∥2

]
✗ ✓ O(1)

ℓim
t (ISM)

Deterministic E
[1

2∥s(Xt)∥2 + div(s)(Xt)
]

✗ ✗ O(d)

Hutchinson E
[1

2∥s(Xt)∥2 + ε⊤∂s(Xt)ε
]

✗ ✗ O(1)

Table 2: Computational complexity of score matching losses w.r.t. score network passes.

Synthetic data on torii
▶ We consider a wrapped Gaussian target distribution on Td = S1 × · · · × S1.
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Moser Flow (K=1000, Moser likelihood)

Moser Flow (K=5000, Moser likelihood)

Moser Flow (K=20000, Moser likelihood)

RSGM

Moser Flow (K=1000, ODE likelihood)
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Earth science datasets on the sphere
▶ We evaluate RSGMs on occurrences of earth and climate science

events distributed on the surface of the earth.

(a) Volcano (b) Earthquake (c) Flood (d) Fire

Figure 2: Trained RSGM on earth sciences data, with density in green-blue.

Method Volcano Earthquake Flood Fire

Mixture of Kent −0.80±0.47 0.33±0.05 0.73±0.07 −1.18±0.06

Riemannian CNF −6.05±0.61 0.14±0.23 1.11±0.19 −0.80±0.54
Moser Flow −4.21±0.17 −0.16±0.06 0.57±0.10 −1.28±0.05
Stereographic Score-Based −3.80±0.27 −0.19±0.05 0.59±0.07 −1.28±0.12
Riemannian Score-Based −4.92±0.25 −0.19±0.07 0.45±0.17 −1.33±0.06

Dataset size 827 6120 4875 12809

Table 3: Negative log-likelihood. Confidence intervals computed over 5 runs.

Method Training Likelihood evaluation Sampling

RCNF [4] Solve ODE O(dN) Solve ODE O(dN) Solve ODE O(N)

Moser [5] Computing div O(dk) or O(k) Solve ODE O(dN) Solve ODE O(N)

RSGM Score matching O(d) or O(1) Solve ODE O(dN) Solve SDE O(N∗)

Table 4: Computational complexity w.r.t. neural network passes.

Synthetic data on SO(3)
▶ We consider a mixture of wrapped Gaussian target on

SO3(R) = {Q ∈ M3(R) : QQ⊤ = I3, det(Q) = 1}.

Figure 3: Histograms of SO3(R) samples from a target mixture distribution.

Method
M = 16 M = 32 M = 64

log p NFE log p NFE log p NFE

Moser Flow 0.85±0.03 2.3±0.5 0.17±0.03 2.3±0.9 −0.49±0.02 7.3±1.4

Exp-wrapped SGM 0.87±0.04 0.5±0.1 0.16±0.03 0.5±0.0 −0.58±0.04 0.5±0.0

RSGM 0.89±0.03 0.1±0.0 0.20±0.03 0.1±0.0 −0.49±0.02 0.1±0.0

Table 5: Log-likelihood and neural function evaluations (NFE) in 103.
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