Riemannian Score-Based Generative Modelling

Valentin De Bortoli^{*}, Emile Mathieu^{*}, Michael Hutchinson^{*}, James Thornton, Yee Whye Teh, Arnaud Doucet Department of Statistics, University of Oxford, United Kingdom. *Equal contribution.

Motivation and overview

- Score-based generative models (SGMs) [6, 2] have shown great success for modelling flexible distributions.
- **Data** is often naturally described on **Riemannian manifolds** such as spheres, torii, and Lie groups, whereas standard SGMs assume a **flat** geometry, making them ill-suited.
- ► We introduce **Riemannian SGMs**, a model which admits the parametrization of **flexible distributions on manifolds** by simulating the time reversal of continuous diffusion process.

Contributions

- ► We establish that the corresponding **time-reversal process** is also a diffusion whose drift includes the Stein score.
- ▶ Rely on Geodesic Random Walk for **sampling** processes [3].
- ► We provide theoretical **convergence bounds** for RSGMs.
- ► We **empirically demonstrate** that RGSMs perform and scale better than recent baselines [4, 5].

Ingredient \ Space	Euclidean	Manifolds / Compact manifolds
Forward process	Ornstein–Uhlenbeck	Langevin Dynamics / Brownian
Base distribution pref	Gaussian	Wrapped Normal / Uniform
Time reversal	[1, Theorem 4.9]	Theorem 1
Sampling of the forward	Direct	Geodesic Random Walk
Sampling of the backward	Euler-Maruyama	Geodesic Random Walk

Table 1: SGM on Euclidean spaces vs RSGM on Riemannian manifolds.

Noising and denoising processes

We rely on **Langevin dynamics** for the forward noising process

$$\mathrm{d}\mathbf{X}_t = -rac{1}{2} \nabla_{\mathbf{X}_t} U(\mathbf{X}_t) \mathrm{d}t + \mathrm{d}\mathbf{B}_t^{\mathcal{M}},$$

which admits the invariant density $dp_{ref}/dVol_{\mathcal{M}}(x) \propto e^{-U(x)}$. A convenient choice for p_{ref} is the Wrapped normal distribution, and on compact manifolds we choose the uniform $p_{ref} = 1 / Vol_{\mathcal{M}}$.

Theorem 1: Time-reversed diffusion

Let $(\mathbf{Y}_t)_{t \in [0,T]} = (\mathbf{X}_{T-t})_{t \in [0,T]}$ the time-reversal. Under mild assumptions on p_0 and on p_t the density of $\mathbb{P}_t = \mathcal{L}(\mathbf{X}_t)$, then

$$\mathrm{d}\mathbf{Y}_t = \{\frac{1}{2}
abla_{\mathbf{Y}_t} U(\mathbf{Y}_t) + \nabla \log p_{T-t}(\mathbf{Y}_t)\} \mathrm{d}t + \mathrm{d}\mathbf{B}_t^{\mathcal{M}}.$$

(b) GRW step

Algorithm 1 GRW (Geodesic Random Walk)

Require: $T, N, X_0^{\gamma}, b, \sigma, P, \gamma = T/N$ 1: for $k \in \{0, ..., N-1\}$ do

 $Z_{k+1} \sim \mathrm{N}(0, \mathsf{Id})$

- $W_{k+1} = \gamma b(k\gamma, X_k^{\gamma}) + \sqrt{\gamma} \sigma(k\gamma, X_k^{\gamma}) Z_{k+1}$
- $X_{k+1}^{\gamma} = \exp_{X_{k}^{\gamma}}[W_{k+1}]$

 \triangleright Gaussian on tangent space $T_x \mathcal{M}$ ▷ Euler–Maruyama step \triangleright Geodesic projection onto \mathcal{M}

(c) Trajectory

Algorithm 2 RSGM (Riemannian Score-Based Generative Model)

Req	uire: $\varepsilon, T, N, \{X\}$
1:	for $n \in \{0,, I\}$
2:	$X_0 \sim (1/M)$)
3:	$t \sim U([\varepsilon, T])$
4:	$\mathbf{X}_t = \mathrm{GRW}(t,$
5:	$\ell(\theta_n) = \ell_t(T,$
6:	$\theta_{n+1} = \texttt{opt}$
7:	$ heta^{\star} = heta_{N_{ ext{epoch}}}$
8:	$Y_0 \sim p_{ m ref}$ /// SAN
9:	$b_{\theta}^{\star}(t,x) = \frac{1}{2} \nabla_{x} U$
10:	$\{Y_k\}_{k=0}^N = GRW$

Theorem 2: Quantitative bounds for RSGM

Loss

(1)

(2)

 $\ell_{t|0}$ (DSM)

 $\ell_t^{\rm im}$ (ISM)

Table 2: Computational complexity of score matching losses w.r.t. score network passes.

Score-based generative modelling

 $\{\mathbf{X}_{0}^{m}\}_{m=1}^{M}, \text{loss}, \mathbf{S}, \theta_{0}, \mathbf{N}_{\text{iter}}, \mathbf{p}_{\text{ref}}, \mathbf{P}$ $N_{\text{iter}} - 1$ do /// TRAINING /// $\sum_{m=1}^{M} \delta_{X_0^m}$

 $, N, X_0, 0, Id, P)$ $(N, X_0, \mathbf{X}_t, \text{loss}, \mathbf{s}_{\theta_n})$ $imizer_update(\theta_n, \ell(\theta_n))$

MPLING /// $U(x) + \mathbf{s}_{\theta^{\star}}(T - t, x)$ for any $t \in [0, T]$, $x \in \mathcal{M}$ $V(T, N, Y_0, b_{\theta^*}, \mathsf{Id}, \mathsf{P})$

Random mini-batch from dataset \triangleright Uniform sampling between ε and T Approximate forward diffusion with Algorithm 1 Compute score matching loss from Table 2 > ADAM optimizer step

▷ Sample from uniform distribution Reverse process drift Approximate reverse diffusion with Algorithm 1

 \blacktriangleright The following result ensures that RSGM generates samples which are close to p_0 .

Under mild assumption over p_0 , assuming that \mathcal{M} is compact and that there exists $\mathbb{M} \geq 0$ such that for any $t \in [0, T]$ and $x \in \mathcal{M}, \|\mathbf{s}_{\theta^{\star}}(t, x) - \nabla \log p_t(x)\| \leq M$, with $\mathbf{s}_{\theta^{\star}} \in \mathbb{N}$ $C([0, T], \mathcal{X}(\mathcal{M}))$. Then if T > 1/2, there exists $C \ge 0$ independent on T s.t.

$$\mathbf{W}_1(\mathcal{L}(Y_N), p_0) = C(e^{-\lambda_1 T} + \sqrt{T/2}M + e^T \gamma^{1/2}),$$

where \mathbf{W}_1 is the Wasserstein distance of order one on the probability measures on \mathcal{M} .

Score matching on compact manifolds

• The heat kernel is given by $p_{t|0}(x_t|x_0) = \sum_{j \in \mathbb{N}} e^{-\lambda_j t} \phi_j(x_0) \phi_j(x_t)$ (Sturm–Liouville). ► Truncation: $S_{J,t}(x_0, x_t) \triangleq \nabla_{x_t} \log \sum_{j=0}^{J} e^{-\lambda_j t} \phi_j(x_0) \phi_j(x_t) \approx \nabla_{x_t} \log p_t(x_t | x_0).$

Approximation	Loss function	Requirements		Complexity
, pproximation		$p_{t 0}$	$\exp_{\mathbf{X}_t}^{-1}$	Complexity
None	$rac{1}{2}\mathbb{E}\left[\ \mathbf{s}(\mathbf{X}_t) - abla_{\mathbf{X}_t}\log p_t(\mathbf{X}_t \mathbf{X}_0)\ ^2 ight]$	_	_	_
Truncation	$rac{1}{2}\mathbb{E}\left[\ \mathbf{s}(\mathbf{X}_t)-\mathcal{S}_{J,t}(\mathbf{X}_0,\mathbf{X}_t)\ ^2 ight]$	1	×	$\mathcal{O}(1)$
Varhadan	$rac{1}{2}\mathbb{E}\left[\ \mathbf{s}(\mathbf{X}_t)-\exp_{\mathbf{X}_t}^{-1}(\mathbf{X}_0)/t\ ^2 ight]$	×	1	$\mathcal{O}(1)$
Deterministic	$\mathbb{E}\left[rac{1}{2}\ \mathbf{s}(\mathbf{X}_t)\ ^2 + \operatorname{div}(\mathbf{s})(\mathbf{X}_t) ight]$	×	×	$\mathcal{O}(d)$
Hutchinson	$\mathbb{E}\left[rac{1}{2}\ \mathbf{s}(\mathbf{X}_t)\ ^2 + arepsilon^ op \partial \mathbf{s}(\mathbf{X}_t)arepsilon ight]$	×	×	$\mathcal{O}(1)$

Synthetic data on torii

• We consider a wrapped Gaussian target distribution on $\mathbb{T}^d = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1$.

(a) Volcanc

Method RCNF [4] Moser [5] RSGM

(3)

1.5rget 0.5 ص **B** 1.0-M 0.5- $0.0 + \pi/2$

	Method	<i>M</i> = 16		<i>M</i> = 32		<i>M</i> = 64	
	Method	log p	NFE	log p	NFE	log p	NFE
	Moser Flow	$0.85_{\pm0.03}$	$\textbf{2.3}_{\pm 0.5}$	$0.17_{\pm0.03}$	$\textbf{2.3}_{\pm 0.9}$	$-0.49_{\pm 0.02}$	$7.3_{\pm 1.4}$
	Exp-wrapped SGM	$\textbf{0.87}_{\pm 0.04}$	$0.5{\scriptstyle\pm0.1}$	$0.16{\scriptstyle \pm 0.03}$	$0.5_{\pm 0.0}$	$-0.58_{\pm0.04}$	$0.5_{\pm 0.0}$
	RSGM	$\textbf{0.89}_{\pm 0.03}$	$\textbf{0.1}_{\pm \textbf{0.0}}$	$\textbf{0.20}_{\pm 0.03}$	$\textbf{0.1}_{\pm \textbf{0.0}}$	$-\textbf{0.49}_{\pm \textbf{0.02}}$	$\textbf{0.1}_{\pm \textbf{0.0}}$
	Table 5: Log-likelihood and neural function evaluations (NFE) in 10 ³ .						
Refe [1] P. Ca arXi [2] J. Ho [3] E. Jo 32(1 [4] E. M [5] N. R Infor [6] Y. So diffe	ETENCES attiaux, G. Conforti, I. Gentil, and <i>iv:2104.07708</i> , 2021. o, A. Jain, and P. Abbeel. Denois ørgensen. The central limit probl I-2):1–64, 1975. Mathieu and M. Nickel. Riemannia Rozen, A. Grover, M. Nickel, and Y <i>rmation Processing Systems</i> , 202 ong, J. Sohl-Dickstein, D. P. King prential equations. In International	I C. Léonard. Ti ing diffusion pro em for geodesic an continuous no Y. Lipman. Mose 21. ma, A. Kumar, S I Conference on	me reversal o babilistic mo random wall ormalizing flo er flow: Diver 5. Ermon, and b Learning Re	of diffusion proce dels. <i>Advances</i> ks. <i>Zeitschrift fü</i> ws. <i>arXiv prepri</i> gence-based ge d B. Poole. Sco	esses under a in Neural Info r Wahrscheir int arXiv:2000 enerative mod re-based ger 2021.	a finite entropy con formation Processir nlichkeitstheorie un 6.10605, 2020. deling on manifolds nerative modeling tl	dition. <i>arXiv</i> ng Systems, 2 d verwandte . Advances in hrough stocha

Earth science datasets on the sphere

► We evaluate RSGMs on occurrences of earth and climate science events distributed on the surface of the earth.

(b) Earthquake	(c) Flood	(d) Fire

Figure 2: Trained RSGM on earth sciences data, with density in green-blue.

	Volcano	Earthquake	Flood	Fire
ent	$-0.80_{\pm 0.47}$	$0.33_{\pm 0.05}$	$0.73_{\pm0.07}$	$-1.18_{\pm 0.06}$
CNF	$-6.05_{\pm 0.61}$	$0.14_{\pm0.23}$	$1.11_{\pm 0.19}$	$-0.80_{\pm 0.54}$
	$-4.21_{\pm0.17}$	$-0.16_{\pm 0.06}$	$0.57_{\pm 0.10}$	$-1.28_{\pm 0.05}$
nic Score-Based	$-3.80_{\pm0.27}$	$-0.19_{\pm 0.05}$	$0.59_{\pm 0.07}$	$-1.28_{\pm 0.12}$
Score-Based	$-4.92_{\pm0.25}$	$-0.19_{\pm 0.07}$	$0.45_{\pm 0.17}$	$-1.33_{\pm 0.06}$
)	827	6120	4875	12809
Negative log-likelihood. Confidence intervals computed over 5 runs.				

Training	Likelihood evaluation	Sampling
Solve ODE $\mathcal{O}(dN)$	Solve ODE $\mathcal{O}(dN)$	Solve ODE $\mathcal{O}(N)$
Computing div $\mathcal{O}(dk)$ or $\mathcal{O}(k)$	Solve ODE $\mathcal{O}(dN)$	Solve ODE $\mathcal{O}(N)$
Score matching $\mathcal{O}(d)$ or $\mathcal{O}(1)$	Solve ODE $\mathcal{O}(dN)$	Solve SDE $\mathcal{O}(N^*)$

Table 4: Computational complexity w.r.t. neural network passes

Synthetic data on SO(3)

► We consider a mixture of wrapped Gaussian target on $SO_3(\mathbb{R}) = \{Q \in M_3(\mathbb{R}) : QQ^\top = I_3, det(Q) = 1\}.$

Figure 3: Histograms of $SO_3(\mathbb{R})$ samples from a target mixture distribution

preprint 2020.

Gebiete,

in Neural nastic