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Abstract

Gaussian processes aremachine learningmodels capable of learning unknown func-
tions in a way that represents uncertainty, thereby facilitating construction of opti-
mal decision-making systems. Motivated by a desire to deploy Gaussian processes
in novel areas of science, a rapidly-growing line of research has focused on con-
structively extending these models to handle non-Euclidean domains, including
Riemannian manifolds, such as spheres and tori. We propose techniques that gener-
alize this class to model vector fields on Riemannianmanifolds, which are important
in a number of application areas in the physical sciences. To do so, we present a
general recipe for constructing gauge independent kernels, which induce Gaussian
vector fields, i.e. vector-valued Gaussian processes coherent with geometry, from
scalar-valued Riemannian kernels. We extend standard Gaussian process training
methods, such as variational inference, to this setting. This enables vector-valued
Gaussian processes on Riemannian manifolds to be trained using standard methods
and makes them accessible to machine learning practitioners.

Vector Fields on Manifolds

Manifold X smooth geometric space where rules of calculus apply
Tangent space TxX vector space of all directions one can move at x ∈ X
Tangent bundle TX manifold obtained by gluing together all tangent spaces
Cotangent bundle T ∗X similar, but glue together dual spaces of tangent spaces
Vector field f f : X → TX s.t. arrow f(x) ∈ TX matches point x ∈ X

Gaussian Vector Fields and Cross-covariance Kernels

A vector field is a map f : X → TX between manifolds: range is not a vector space.
=⇒ need an appropriate notion of Gaussianity for bundles

Definition. A random vector field f is Gaussian if for any points x1, . . . , xn ∈ X on
the manifold, the vectors f(x1), .., f(xn) ∈ Tx1

X ⊕ ..⊕Txn
X attached to them are

jointly Gaussian, where ⊕ is the vector direct sum.

Provides an appropriate notion of finite-dimensional marginals

Definition. We say that a scalar-valued function k : T ∗X × T ∗X → R is a cross-
covariance kernel if it satisfies the following key properties.

1. Symmetry: for all α, β ∈ T ∗X , k(α, β) = k(β, α) holds.

2. Fiberwise bilinearity: for any x, x′ ∈ X , we have k(λαx + µβx, γx′) =
λk(αx, γx′) + µk(βx, γx′) for any αx, βx ∈ T ∗xX , γx′ ∈ T ∗x′X and λ, µ ∈ R.

3. Positive definiteness: for any covectors α1, .., αn ∈ T ∗X , we have that∑n
i=1

∑n
j=1 k(αi, αj) ≥ 0.

Theorem. Every Gaussian random vector field admits and is uniquely determined
by a mean vector field and a cross-covariance kernel.

Equivariant Matrix-valued Kernels

×

×

=

Basis coefficients Frame Vector field

Frame: simultaneous systems of coordinates chosen in all tangent spaces

Proposition. Every cross-covariance kernel can be represented in a frame as an
equivariant matrix-valued kernel.

Different frames different representations as matrices

Projected Kernels

Scalar processes Embedded process Projected process

Idea: construct Gaussian vector field by the following steps.

(1) Embed scalar-valued Gaussian processes into a higher-dim. space Rd′
.

(2) Assemble them into a vector-valued Gaussian process f : X → Rd′
,

(3) Project onto the tangent spaces to obtain a tangential vector field.

Scalar-valued Riemannian kernels [1]: basic building block

In a frame F , this procedure defines a projected kernel:

KF (x, x
′) = Pxκ(x, x

′)PT
x′ .

κ: vector-valued kernel from manifold into Rd′

Px: projection matrix between TxX and the Euclidean tangent space

Different frames different projection matrices differentKF

Proposition. All cross-covariance kernels can be written as projected kernels.

Train by choosing a frame and working with matrix-valued kernels using
standard techniques such as inducing points and variational inference

Dynamics Modelling: pendulum with friction
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Figure 1: An ideal pendulum with pivot friction has a state space that is a cylinder,
[0, 2π] × R. Taking into account the geometry ensures no discontinuity at 2π, and
facilitates stable long term predictions.

Weather Modelling

Figure 2: Modelling wind fields over the Earth involves placing kernels over the
manifold S2. Taking into account the correct geometry prevents warping of infer-
ence at the poles and discontinuities at the seam where we unwrap the sphere.
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