Differentially Private Federated Variational Inference

Mrinank Sharma,¹* Michael Hutchinson,¹* Siddharth Swaroop,² Antti Honkela,³ Richard E. Turner² ¹ University of Oxford, UK² University of Cambridge, UK³ University of Helsinki, Finland

* Work done whilst at the Univeristy of Cambridge. Equal Contribution. Correspondence to Mrinank Sharma <mrinank@robots.ox.ac.uk>.

SUMMARY

Problem. Perform (approximate) probabilistic inference on distributed data whilst respecting the privacy of individual clients.
Proposal. Combine *Partitioned Variational Inference* (PVI) with *Differentially Private* (DP) client side optimisation.

Results. Learn strongly private logistic regression models in the federated setting which achieves similar performance to non-private centralized training.

DP-PVI

- 1: Input: Clients $\{y_m\}_{m=1}^M$, where $y_m = \{(x_i, t_i)\}_{i=1}^{N_m}$.
- 2: Parameters: minibatch size L, gradient norm bound C, noise scale σ.
 3: Within each client, having received q^{old}(θ) from the server, optimize:

$$q_m^{\text{new}}(\boldsymbol{\theta}) = \underset{q(\boldsymbol{\theta})\in\mathcal{Q}}{\text{arg min}} \quad \mathcal{KL}\Big(q(\boldsymbol{\theta})||\frac{1}{\mathcal{Z}'}\frac{q^{\text{old}}(\boldsymbol{\theta})}{t_m^{\text{old}}(\boldsymbol{\theta})}p(\boldsymbol{y}_m|\boldsymbol{\theta})\Big).$$
(4)

This optimisation is done via Adagrad. At each iteration t, use the Gaussian Mechanism on the minibatch gradient, subsampling a minibatch

VARIATIONAL INFERENCE

Uncertainty is essential for optimal decision making, but often performing inference is intractable. *Variational Inference (VI)* **approximates the posterior with a simpler variational distribution**, $q_{\lambda}(\theta)$, with λ chosen to maximise $\mathcal{F}(\theta)$ the **Free Energy**

of size L (denoted as \mathcal{L}):

$$\tilde{\boldsymbol{g}}_{t} = \frac{1}{L} \left[\sum_{i \in \mathcal{L}} \frac{\boldsymbol{g}(\boldsymbol{x}_{i})}{\max\left(1, \frac{\|\boldsymbol{g}(\boldsymbol{x}_{i})\|_{2}}{C}\right)} + \mathcal{N}(0, \sigma^{2}C^{2}\boldsymbol{I}) \right].$$
(5)

4: After optimisation, communicate to the global server:

$$\Delta t_m(\boldsymbol{\theta}) = \frac{t_m^{\text{new}}(\boldsymbol{\theta})}{t_m^{\text{old}}(\boldsymbol{\theta})} = \frac{q_m^{\text{new}}(\boldsymbol{\theta})}{q^{\text{old}}(\boldsymbol{\theta})}.$$

(6)

5: The global server updates $q(\boldsymbol{\theta}) \leftarrow q^{old}(\boldsymbol{\theta}) \Delta t_m(\boldsymbol{\theta})$.

RESULTS

Mean-field Bayesian logistic regression, M = 10 clients on UCI Adult. **Imbalanced client data-set sizes and class imbalance** on the dataset distribution. **Asynchronous Setting**.

PARTITONED VARIATIONAL INFERENCE (PVI)

The data is now partitioned across M clients i.e., $y = \{y_1, \ldots, y_M\}$. We change our **Variational Distribution** to match this:

$$q(\boldsymbol{\theta}) = p(\boldsymbol{\theta}) \prod_{m=1}^{M} t_m(\boldsymbol{\theta}) \simeq \frac{p(\boldsymbol{\theta})}{\mathcal{Z}} \prod_{m=1}^{M} p(\boldsymbol{y}_m | \boldsymbol{\theta}).$$
(2)

CONCLUSIONS & FUTURE WORK

- First-of-its-kind method for **private**, **federated**, **Bayesian ML**.
- Similar performance to PVI whilst achieving strong privacy guarantees.
- Significantly outperforms non-private VI.

Client Level Privacy

(3)

Often clients hold data about themselves only. This setting requires *client level differential privacy*, where neighbouring datasets are those which differ by an entire client.

 $\hat{p}(\theta)$ is known as the *titled distribution*. At each iteration, we update each client.

$$q_m^{(i)}(\boldsymbol{\theta}) = \arg\min \mathcal{F}_m^{(i)}(q(\boldsymbol{\theta})), \quad t_m^{(i)}(\boldsymbol{\theta}) = \frac{q_m^i(\boldsymbol{\theta})}{q^{(i-1)}(\boldsymbol{\theta})} t_m^{(i-1)}(\boldsymbol{\theta})$$

Any fixed point of PVI is a fixed point of global VI.

