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| SUMMARY ] | DP-PVI ]

Problem. Perform (approximate) probabilistic inference on distributed

data whilst respecting the privacy of individual clients. 1: Input: Clients {y,, },,—,, where y,, = {(x;, tz)}f\;”i

Proposal. Combine Partitioned Variational Inference (PVI) with Differen- 2: Parameters: minibatch size L, gradient norm bound C, noise scale o.
tially Private (DP) client side optimisation. 3: Within each client, having received qOId(H) from the server, optimize:
Results. Learn strongly private logistic regression models in the feder- T

ate.d setting which achieves similar performance to non-private centralized "V (0) = arg min KL (q )] 1/ q - (6) o ymIH))- (4)
training. ¢(6)eQ Z' 194(0)

This optimisation is done via Adagrad. At each iteration ¢, use the Gaus-
Privacy sian Mechanism on the minibatch gradient, subsampling a minibatch
of size L (denoted as £):
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4: After optimisation, communicate to the global server:
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MEME RESULTS

Mean-field Bayesian logistic regression, M = 10 clients on UCI Adult.

|VARI ATIONAL INFERENCE \ Imbalanced client data-set sizes and class imbalance on the dataset
distribution. Asynchronous Setting.

Uncertainty is essential for optimal decision making, but often performing
1nf§rence. is 1nt1:actable. Va.rla.tlonal I.nfeijence. (VD) approx1.mates the pos- Global VI Communication
terior with a simpler variational distribution, ¢, (0), with A chosen to 0 2500 5000 7500 10000
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|CONCLUSIONS & FUTURE WORK ]

e First-of-its-kind method for private, federated, Bayesian ML.

PARTITONED VARIATIONAL INFERENCE (PVI) e Similar performance to PVI whilst achieving strong privacy guarantees.

The data is now partitioned across M clients i.e., y = {y1,...,yum }.
We change our Variational Distribution to match this:

e Significantly outperforms non-private VI.

M o(6) M Client Level Privacy
q(0) = p(0) H tim (0) 5 H P(ym|0) . (2) Often clients hold data about themselves only. This setting requires client
m=1 m=1 level differential privacy, where neighbouring datasets are those which differ
p(0]y) by an entire client.
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We minimise the Local Free Energy:
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p(0) is known as the titled distribution. At each iteration, we update each
client.
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