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SUMMARY

Problem. Perform (approximate) probabilistic inference on distributed
data whilst respecting the privacy of individual clients.
Proposal. Combine Partitioned Variational Inference (PVI) with Differen-
tially Private (DP) client side optimisation.
Results. Learn strongly private logistic regression models in the feder-
ated setting which achieves similar performance to non-private centralized
training.
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VARIATIONAL INFERENCE

Uncertainty is essential for optimal decision making, but often performing
inference is intractable. Variational Inference (VI) approximates the pos-
terior with a simpler variational distribution, qλ(θ), with λ chosen to
maximise F(θ), the Free Energy.

F(θ) =

∫
q(θ) log

p(y,θ)

q(θ)
dθ

= log p(y)−KL(q(θ)||p(θ|y)) (1)

PARTITONED VARIATIONAL INFERENCE (PVI)
The data is now partitioned across M clients i.e., y = {y1, . . . ,yM}.
We change our Variational Distribution to match this:

q(θ) = p(θ)
M∏

m=1

tm(θ) ' p(θ)

Z
M∏

m=1

p(ym|θ)︸ ︷︷ ︸
p(θ|y)

. (2)

We minimise the Local Free Energy:

F (i)
m (q(θ)) =

∫
q(θ) log

1

q(θ)

Z′p̂(θ)︷ ︸︸ ︷
q(i−1)(θ)p(ym|θ)

t
(i−1)
m (θ)

dθ

= logZ ′ −KL(q(θ)||p̂(θ)), (3)

p̂(θ) is known as the titled distribution. At each iteration, we update each
client.

q(i)m (θ) = arg minF (i)
m (q(θ)), t(i)m (θ) =

qim(θ)

q(i−1)(θ)
t(i−1)m (θ)

Any fixed point of PVI is a fixed point of global VI.

DP-PVI

1: Input: Clients {ym}Mm=1, where ym = {(xi, ti)}Nm
i=1.

2: Parameters: minibatch size L, gradient norm bound C, noise scale σ.
3: Within each client, having received qold(θ) from the server, optimize:

qnew
m (θ) = arg min

q(θ)∈Q
KL
(
q(θ)|| 1

Z ′
qold(θ)

told
m (θ)

p(ym|θ)
)
. (4)

This optimisation is done via Adagrad. At each iteration t, use the Gaus-
sian Mechanism on the minibatch gradient, subsampling a minibatch
of size L (denoted as L):

g̃t =
1

L

∑
i∈L

g(xi)

max
(

1, ‖g(xi)‖2
C

) +N (0, σ2C2I)

 . (5)

4: After optimisation, communicate to the global server:

∆tm(θ) =
tnew
m (θ)

told
m (θ)

=
qnew
m (θ)

qold(θ)
. (6)

5: The global server updates q(θ)← qold(θ)∆tm(θ).

RESULTS

Mean-field Bayesian logistic regression, M = 10 clients on UCI Adult.
Imbalanced client data-set sizes and class imbalance on the dataset
distribution. Asynchronous Setting.
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CONCLUSIONS & FUTURE WORK

• First-of-its-kind method for private, federated, Bayesian ML.

• Similar performance to PVI whilst achieving strong privacy guarantees.

• Significantly outperforms non-private VI.

Client Level Privacy
Often clients hold data about themselves only. This setting requires client
level differential privacy, where neighbouring datasets are those which differ
by an entire client.
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